解答GMAT数学的排列组合
来源:哈鲁教育 2015-01-05
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法。
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!
(三)组合和组合数
(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合。
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合。
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的。
[反思] 排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志。
简单举例:1、2、3挑两个组成一个数字和1、2、3挑两个数字是完全不一样的!1、2、3挑两个组成一个数字那是排列;1、2、3挑两个数字那是组合。例如我选1和2,排列里面12和21是两个数字!但是组合的话挑1和2就和挑2和1没有分别!!!
- • 港教大新项目教育政策与管理硕士课程内容、申请要求、DDL汇总!
- • “激发人力潜能”?新国立医学院26fall再上新硕士专业,小众但有用!
- • 【哈鲁2026录取】港城大热门商科录取!双非背景拿下国际会计硕士offer!
- • 【哈鲁2026录取】港中文offer+1!雅思6.5拿下数学硕士录取!
- • 【哈鲁2026录取】GPA3.2+获波士顿大学机器人与自主系统理学硕士offer!
- • “杀”疯了!港中文再上新三个硕士专业,涵盖材料、地球环境、艺术史等领域!
- • 香港教育大学人工智能硕士课程内容、申请要求、DDL汇总!
- • NTU 26fall招生!新加坡首个中医学硕士,冲不冲?
- • 杜伦大学新增热门AI项目——数据科学与人工智能应用硕士!
- • 【哈鲁2026录取】双非背景获香港中文大学应用英语语言学硕士offer!
- • 伦敦国王学院26fall新项目科学人工智能硕士,已开放申请!
- • 港中文26fall又双叒叕增新专业—微电子与集成电路理学硕士,已开放申请!



